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Abstract 

Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-κN7)] (1) 

and [AuCl3(4,7-phen-κN4)] (2) were synthesized and structurally characterized by 

spectroscopic (NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. In 

these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the 

Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the 

clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-

phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, 

and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the 

most potent and may be an excellent anti-angiogenic drug candidate, since it showed 

strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration 

resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 µM, while had low 

toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 

128 µM. Molecular docking study revealed that both complexes and ligands could 

suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the 

vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases 

(MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed 

higher binding affinity in comparison to ligands, and particularly to auranofin, but 

comparable to sunitinib, an anti-angiogenic drug of clinical relevance. 

 

Keywords: Gold(III) complexes, Phenanthroline, Cytotoxicity, Embryotoxicity, Angiogenesis 
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Fig. S1. The structures of mononuclear gold(III) complexes 1 and 2 calculated at the M06-

2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory.  
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Fig. S2. Optimized geometries of the chemical species involved in the reaction of [AuCl4]
- 

with 1,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-

pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: RC1,7-phen 

(reactant complex) → TS1,7-phen-1 (transition state 1) → IC1,7-phen (intermediate complex) → 

TS1,7-phen-2 (transition state 2) → PC1,7-phen (product complex). 
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Fig. S3. Optimized geometries of the chemical species involved in the reaction of [AuCl4]
- 

with 4,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-

pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: RC4,7-phen 

(reactant complex) → TS4,7-phen-1 (transition state 1) → IC4,7-phen (intermediate complex) → 

TS4,7-phen-2 (transition state 2) → PC4,7-phen (product complex).  
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Fig. S4. Energy diagram of the reactions of [AuCl4]
- with 1,7-phen (A) and 4,7-phen (B) in 

2 : 1 molar ratio, respectively. Relative free energies (M06-2X(CPCM)/cc-

pVTZ+LanL2TZ(f)) were computed with respect to the corresponding reactant complex. 

For more details see Figs. S2 and S3. 
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Fig. S5. The anti-angiogenic phenotype of zebrafish embryos defined as effect of different 

concentrations of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7-and 4,7-

phen ligands and K[AuCl4] on the ISVs development. 1.25 µM auranofin and sunitinib 

were used as positive controls. 
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Fig. S6. The inhibition of ISVs and SIVs angiogenesis upon treatments with different 

concentrations of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7- and 4,7-

phen ligands and K[AuCl4] on the ISVs development. 1.25 µM auranofin and sunitinib 

were used as positive controls.  
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Fig. S7. The effect of different concentrations of gold(III)-phenanthroline complexes 1 and 

2, the respective 1,7- and 4,7-phen ligands and K[AuCl4] on the heart beating rate of 

zebrafish embryos (n = 30). Auranofin and sunitinib applied in the concentration of 1.25 

µM were used as positive controls. 
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Fig. S8. Therapeutic window (TW) of gold(III)-phenanthroline complexes 1 and 2, the 

respective 1,7- and 4,7-phen ligands, K[AuCl4], auranofin and sunitinib assessed as the 

ratio of LC50 and IC50. Respective TW values are presented above each of tested 

compounds.  
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Fig. S9. The binding of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib in the active site of VEGFR-2 protein as assessed by molecular docking. 
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Fig. S10. The binding of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib in the active site of MMP-2 protein as assessed by molecular docking. 
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Fig. S11. The binding of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib in the active site of MMP-9 protein as assessed by molecular docking. 
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Fig. S12. The binding of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib in the active site of the protein thioredoxin reductase 1 (TrxR1) as assessed by 

molecular docking.  
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Fig. S13. Interactions of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib with VEGFR-2 protein during molecular docking.   
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Fig. S14. Interactions of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib with MMP-2 protein during molecular docking.  
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Fig. S15. Interactions of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib with MMP-9 protein during molecular docking.   
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Fig. S16. Interactions of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin and 

sunitinib with selenocysteine residue of TrxR1 protein during molecular docking.  
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Table S1 

Crystal data for 1 and 2. 

For all structures: C12H8AuCl3N2, Mr = 483.52. Experiments were carried out at 295 K 

with Mo Kα radiation. H-atom parameters were constrained. 

 1 2 

Crystal data 

Crystal system, space group Monoclinic, P21/c 
Triclinic, P  

a, b, c (Å) 12.1848(3), 14.1996(3), 7.7110(2) 7.8420(12), 8.8631(14), 10.7500(5) 

, ,  (°) 90, 95.833(2), 90 78.707(8), 87.300(8), 66.988(15) 

V (Å3) 1327.24(6) 674.04(17) 

Z 4 2 

Dx (Mg m-3) 2.420 2.382 

 (mm-1) 11.67 11.49 

Crystal size (mm) 0.18 × 0.05 × 0.03 0.18 × 0.05 × 0.03 

Data collection 

Absorption correction Analytical  Multi-scan  

 Tmin, Tmax 0.093, 0.780 0.903, 1.000 

No. of measured, independent and 

 observed [I > 2(I)] reflections 

18485, 2336, 2126   4091, 4091, 3247   

Rint 0.041  

(sin /)max (Å-1) 0.595 0.596 

Refinement 

R[F2 > 2(F2)], wR(F2), S 0.019,  0.044,  1.08 0.036,  0.083,  0.93 

No. of reflections 2336 4091 

No. of parameters 163 164 

max, min (e Å-3) 0.83, -0.56 1.08, -0.87 

Percent Filled Space (K.P.I.) (%)a 69.2 67.9 
aFor definition see: A.I. Kitajgorodskij, Molecular Crystals and Molecules, New-York, Academic 

Press, 1973. 
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Table S2  

Lethal and teratogenic effects observed in zebrafish (Danio rerio) embryos at different 

hours post fertilization (hpf). 

Category   Developmental endpoints  Exposure time (hpf) 

    24  48  72  96/114 

        Lethal effect  Egg coagulationa  ● ● ● ● 

  No somite formation  ● ● ● ● 

  Tail not detached  ● ● ● ● 

  No heartbeat   ● ● ● 

        
Teratogenic effect  Malformation of head  ● ● ● ● 

  Malformation of eyesb  ● ● ● ● 

  Malformation of sacculi/otolithsc  ● ● ● ● 

  Malformation of chorda  ● ● ● ● 

  Malformation of taild  ● ● ● ● 

  Scoliosis  ● ● ● ● 

  Heartbeat frequency   ● ● ● 

  Blood circulation   ● ● ● 

  Pericardial edema  ● ● ● ● 

  Yolk edema  ● ● ● ● 

  Yolk absosrption  ● ● ● ● 

  Growth retardatione  ● ● ● ● 
aNo clear organs structure is recognized. 
bMalformation of eyes was recorded for the retardation in eye development and abnormality in 

shape and size. 
cPresence of no, one or more than two otoliths per sacculus, as well as reduction and enlargement 

of otoliths and/or sacculi (otic vesicles). 
dTail malformation was recorded when the tail was bent, twisted or shorter than to control embryos 

as assessed by optical comparation. 
eGrowth retardation was recorded by comparing with the control embryos in development or size 

(before hatching, at 24 and 48 hpf) or in a body length (after hatching, at and onwards 72 hpf) using 

by optical comparation using an inverted microscope (CKX41; Olympus, Tokyo, Japan). 
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Table S3  

Selected bond distances (Å) and valence angles (o) of the gold(III) complexes 1 and 2. 

 1 2 

X-ray DFT-calculated X-ray DFT-calculated 

Au—Na 2.049(3) 2.0477 2.066(7) 2.0490 

Au—Cl1 2.2858(10) 2.3007 2.284(3) 2.3005 

Au—Cl2 2.2643(10) 2.2789 2.273(2) 2.2788 

Au—Cl3 2.2701(12) 2.2993 2.273(3) 2.2997 

     

N—Au—Cl1 89.64(9) 89.0716 89.5(2) 89.1026 

N—Au—Cl2 178.07(10) 178.6975 179.9(3) 178.4938 

N—Au—Cl3 88.90(9) 88.7922 88.9(2) 88.7689 

Cl1—Au—Cl2 90.29(4) 91.1128 90.58(11) 91.0814 

Cl1—Au—Cl3 178.49(4) 177.8293 176.79(11) 177.8456 

Cl2—Au—Cl3 91.16(4) 91.0316 91.04(11) 91.0551 

Au—N—C6a 121.0(2) 121.8445   

Au—N—C8 118.4(3) 116.9398   

Au—N—C4a   122.2(6) 122.0368 

Au—N—C3   116.1(6) 116.5949 
aN7 for the complex 1 and N4 for the complex 2. 
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Table S4  

Geometrical parameters describing intermolecular interactions in the crystals of 1 and 2a,b.  

 
D–H 

[Å] 
D···A [Å] H···A [Å] 

D-H···A 

[°] 

Symmetry 

operations on A 

1      

C2–H2···N1 0.93                 3.632(5) 2.79 151 -x+1,-y+2,-z+1 

C3–H3···Cl1 0.93             3.753(5) 2.87 158 -x+1,+y+1/2,-z+1/2+1 

C4–H4···Cl3 0.93               3.832(4) 2.92 166 -x+1,-y+1,-z+1 

C8–H8···Cl1 0.93            3.705(4) 2.87 150 -x,-y+1,-z+1 

C9–H9···Cl1 0.93                3.600(4) 2.96 127 x,-y+1/2+1,+z-1/2 

C9–H9···Cl2 0.93                3.701(4) 2.93 141 -x,+y+1/2,-z+1/2 

2      

C2–H2···N7 0.93             3.398(13) 2.48 171 x+1,+y-1,+z 

C9–H9···Cl1 0.93             3.713(12) 2.87 151 -x,-y+1,-z 

C9–H9···Cl3 0.93             3.544(11) 2.88 129 -x+1,-y+1,-z 

C8–H8···Cl2 0.93             3.820(10) 2.92 164 x-1,+y+1,+z-1 

C5–H5···Cl3 0.93             3.573(12) 2.84 137 -x+1,-y+1,-z+1 

C3–H3···Cl1 0.93             3.713(9) 2.83 160 -x+1,-y,-z+1 

C1–H1···Cl2 0.93             3.778(11) 2.88 163 x,+y,+z-1 

 

Cl···Cl 

Au···Cl 
X···X [Å] d [Å] θ1 / θ2 [°] type 

Symmetry 

operations 

1 Cl1···Cl3 3.4374(16) 149.30(6) /  

149.01(7) 

I x,+y,+z+1 

 Cl1···Au1 3.4074(11)   -x,-y+1,-z+1 

2 Cl1···Cl3 3.534(4) 150.35(14) / 

152.35(15) 

I x-1,+y,+z 

 Cl1···Au1 3.786(3)   -x+1,-y,-z+1 

 

Off-Face 

stacking 

 
h [Å] r [Å] θ [°] 

Symmetry 

operations 

1  3.887 0.404 14 x,-y+1/2+1,+z-1/2 

2  3.486 1.613 0 -x,-y+1,-z 
aFor description of parameters describing the halogen bonds see G.R. Desiraju, R. Parthasarathy, J. 

Am. Chem. Soc. 111 (1989) 8725-8726; A. Mukherjee, S. Tothadi, G.R. Desiraju, Acc. Chem. Res. 

47 (2014) 2514-2524. 
bFor description of parameters describing stacking interactions see M. L. Główka, D. Martynowski, 

K. Kozłowska, J. Mol. Struct. 474 (1999) 81-89. 
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Table S5 

Crucial interatomic distances (Å) in the structures involved in the mechanism of the reaction of [AuCl4]
- with 1,7- and 4,7-phen calculated at the 

M06-2X/cc-PVTZ+LanL2TZ(f) level of theory. 

 Au1—N7 Au1—Cl1 Au1—Cl2 Au1—Cl3 Au1—Cl7 

 

Au2—N1 

 

Au2—Cl4 

 

Au2—Cl5 

 

Au2—Cl6 

 

Au2—Cl8 

 

RC1,7-phen 2.9590 2.3100 2.3106 2.3088 2.3085 3.2725 2.3063 2.3080 2.3061 2.3055 

TS1,7-phen -1 2.3957 2.3005 2.3278 2.2963 2.6415 3.1989 2.3048 2.3081 2.3067 2.3042 

IC1,7-phen 2.0507 2.3053 2.2929 2.3081 3.2298 3.4059 2.3037 2.3048 2.3085 2.3028 

TS1,7-phen -2 2.0549 2.3051 2.2878 2.3082 3.2150 2.4048 2.2980 2.3069 2.2961 2.7140 

PC1,7-phen 2.0637 2.3078 2.2862 2.3057 3.1860 2.0838 2.3062 2.2788 2.3079 3.2069 

 Au1—N4 Au1—Cl1 Au1—Cl2 Au1—Cl3 Au1—Cl7 

 

Au2—N7 

 

Au2—Cl4 

 

Au2—Cl5 

 

Au2—Cl6 

 

Au2—Cl8 

 

RC4,7-phen 2.9611 2.3111 2.3091 2.3113 2.3088 2.9622 2.3113 2.3091 2.3112 2.3089 

TS4,7-phen -1 2.4037 2.2994 2.3253 2.2955 2.6426 2.9530 2.3097 2.3089 2.3088 2.3084 

IC4,7-phen 2.0538 2.3068 2.2884 2.3062 3.2286 2.9503 2.3092 2.3098 2.3084 2.3083 

TS4,7-phen -2 2.0574 2.3057 2.2871 2.3076 3.1974 2.3957 2.2952 2.3173 2.3000 2.6631 

PC4,7-phen 

 

2.0628 2.3044 2.2846 2.3079 3.1876 2.0627 2.3046 2.2846 2.3076 3.1877 
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Table S6 

Evaluation of anti-angiogenic potential of gold(III) complexes in comparison to 1,7- and 

4,7-phenanthroline, K[AuCl4] and clinically used drugs auranofin and sunitinib. 

 Affected 

embryos (%)a 

 ISVs (number)  Inhibition (%) 

Compound  Intact Defective Absent  ISVs SIVs 

DMF (0.035%) 3.3 ± 0.6  28.4 ± 0.7 0.5 ± 0.7 0.0 ± 0.0  0.3 ± 1.1 0.1 ± 0.03 

[AuCl3(1,7-phen-κN7)] (1)        

20 µM 100.0 ± 0.0  0.3 ± 0.5 13.5 ± 1.2 14.2 ± 0.9  77.3 ± 1.1 100 ± 0.0 

10 µM 100.0 ± 0.0  5.2 ± 1.1 19.0 ± 1.6 3.8 ± 0.8  51.9 ± 2.7 80.2 ± 0.3 

5 µM 63.3 ± 5.1  17.3 ± 0.8 9.0 ± 0.7 1.9 ± 0.6  45.8 ± 3.6 74.2 ± 1.0 

2.5 µM 50.0 ± 3.3  20.7 ± 1.3 5.3 ± 1.1 2.1 ± 0.9  39.4 ± 1.9 58.5 ± 1.8 

1,7-phen         

20 µM 96.7 ± 4.3  17.7 ± 1.6 8.4 ± 0.8 1.9 ± 1.6  47.8 ± 1.1 55.3 ± 1.9 

10 µM 56.7 ± 1.9  20.1 ± 0.9 6.1 ± 01 2.0 ± 0.7  32.8 ± 1.8 44.5 ± 3.0 

5 µM 10.0 ± 2.1  25.1 ± 0.7 1.9 ± 0.7 1.0 ± 0.7  25.4 ± 2.0 29.6 ± 3.8 

2.5 µM 3.3 ± 0.6  28.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.3  13.1 ± 1.2 13.0 ± 0.6 

[AuCl3(4,7-phen-κN4)] (2)        

20 µM 100.0 ± 0.0  9.0 ± 1.1 10.7 ± 1.3 8.3 ± 1.6  64.3 ± 0.8 86.3 ± 0.1 

10 µM 90.0 ± 0.0  14.4 ± 1.3 11.5 ± 1.2 2.3 ± 0.8  52.1 ± 0.3 76.8 ± 0.4 

5 µM 46.7 ± 2.1  21.2 ± 2.5 7.2 ± 0.8 0.3 ± 0.5  41.3 ± 4.1 49.3 ± 0.1 

2.5 µM 20.0 ± 2.7  24.0 ± 0.9 4.1 ± 1.1 0.1 ± 0.3  33.4 ± 1.6 37.4 ± 0.8 

4,7-phen         

20 µM 76.7 ± 4.2  15.2 ± 0.6 10.9 ± 0.7 1.9 ± 1.1  32.6 ± 0.8 51.3 ± 0.5 

10 µM 43.3 ± 1.7  16.8 ± 1.2 9.1 ± 1.1 2.2 ± 0.8  20.7 ± 2.1 36.6 ± 0.7 

5 µM 6.7 ± 1.2  27.5 ± 0.9 0.5 ± 0.2 0.0 ± 0.0  18.2 ± 3.0 33.0 ± 0.1 

2.5 µM 0.0 ± 0.0  28.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0  8.8 ± 0.4 5.8 ± 1.0 

K[AuCl4]         

20 µM 30. ± 5.8  25.6 ± 1.1 2.4 ± 1.1 0.0 ± 0.0  6.7 ± 0.6 2.7 ± 0.5 

Auranofin         

1.25 µM 100.0 ± 0.0  13.0 ± 1.1 13.6 ± 0.7 1.6 ± 1.1  31.8 ± 1.7 58.0 ± 0.3 

Sunitinib         

1.25 µM 100.0 ± 0.0  7.9 ± 1.2 17.7  ± 

1.1 
2.4 ± 0.5  32.9 ± 4.1 59.0 ± 0.4 

aThe percentage of zebrafish embryos displaying anti-angiogenic phenotype.  

 

 


